
Day 6

Version: 2019-12-27

Day 6: The RANSAC Algorithm and Finding Lines
Quantitative Engineering Analysis

Spring 2019

1 Schedule

• 0900-0915: Quiz

• 0915-0950: Debrief on Using Experimental Data

• 0950-1020: RANSAC

• 1020-1035: Coffee

• 1035-1125: Pseudo-coding

• 1125-1215: Implementation

• 1215- 1230: Preview

2 Quiz

3 Benchmark Quiz [15 mins]

1. The diagram at the right shows a contour map of a two dimen-
sional function, f (x, y), along with points marked A through E.

−6−4 −4

−2

−2

−2

−2

0

0

0

0

0

0

0

2 2

2

2

2

2

22

4

4
6

6

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

A

B

C

D

E

x

y

(a) At which point is f (x, y) ≈ 0?

(b) At which point is |∇ f (x, y)| ≈ 0?

(c) At which point is |∇ f (x, y)| largest?

(d) At which point is ∇ f (x,y)
|∇ f (x,y)| ≈ +î ?

(e) At which point does the determinant of the Hessian of f (x, y)
most clearly appear to be positive?

2. True or false...

(a) If the magnitude of the gradient is zero, you must be at a max
or a min.

(b) Regardless of starting point, gradient ascent will always find the
global maximum of a multivariable function.

(c) Gradient ascent always follows the shortest path to a maximum.

(d) If f (x, y, z) is a scalar function in three dimensions, ∇ f (x, y, z) is
also a scalar function in three dimensions.

(e) The ∇ operator is sometimes referred to as the “upside down
triangle” by students who wish to irritate professors.

Day 6

Version: 2019-12-27

3. Assume point D is a minimum. If you started a gradient ascent at
point D, approximately where would you end up?

(a) Point D

(b) Somewhere in the vicinity of (0, 1.5)

(c) Somewhere in the vicinity of (−0.5,−0.5)

(d) Somewhere in the vicinity of (0.25,−1.6)

(e) You cannot tell with the information provided.

4. What is the cartesian point (12,5) in polar coordinates?

(a) r = 12, θ = 5◦

(b) r = 13, θ = 22.6◦

(c) r = 13, θ = 67.4◦

5. atand in MATLAB returns angles between -90 degrees and 90

degrees. Assuming we want to return angles between 0 degrees
and 360 degrees, match the quadrant and how to treat atand. You
may wish to review "quadrants" from trigonometry.

Quadrant atand

I (a) Add 180
◦ to the function value

II (b) Subtract 180
◦ from the function value

III (c) Add 360
◦ to the function value

IV (d) Use the value from the atand function

4 Debrief on Experimental Data Analysis [35 minutes]

In both the mapping of the Bridge of Doom and when experimenting
with the LIDAR data, we were working with real experimental sensor
data and trying to extract information from this data. Real data is,
as you have probably noticed, inherently messy in a variety of dif-
ferent ways. In the course of mapping the Bridge of Doom and the
initial LIDAR assignment, there were several examples of common
data analysis issues which you needed to deal with. For this debrief,
we’d like you to consider the following list of data analysis issues.
Working with a partner at the boards, create a table. For each entry
in this list, draw a sketch representing the concept, give an example
of this issue from your work this week, indicate how you identify
the issue, and how you deal with the issue. Lastly, can you come up
with another example of this from another context? Some of these are
closely related to each other, also this is nowhere near an exhaustive
list: please feel free to add to it.

• Timing:time origin

Day 6

Version: 2019-12-27

• Timing:sampling rate

• Coordinate system/origin

• Scatter/statistical error

• Outliers

• Systematic error

• Measurement device limitations

• Accuracy

• Precision

5 RANSAC [30 minutes]

Today we’ll be learning a technique for optimization in the pres-
ence of outliers. The algorithm is called Random Sample Consensus,
RANSAC for short, and it has applicability to a wide variety of prob-
lems in robotics and computer vision. In The Gauntlet™ we’ll be
using it to find lines in laser scan data even when multiple structures
are present (e.g., multiple walls, lines and circles).

By the end of this activity, you should be comfortable with:

1. Using the RANSAC algorithm to find a line in a laser scan.

2. Finding multiple lines using the RANSAC algorithm.

5.1 Motivating Example

In the overnight, you applied line fitting techniques to four different
laser scans. The linear regression method worked well in some cases,
but it had some clear shortcomings (e.g., when the scan points were
oriented vertically). The PCA algorithm was able to overcome some
of these limitations, however, there were cases when even PCA failed.
For instance, Figure ?? shows the results of applying both linear re-
gression and PCA to scan4.mat. Due to the fact that there are outliers
(i.e. points that do not lie on the line), both linear regression and
PCA find lines that do not correspond at all to the line clearly visible
in the scan.

We can conclude from this example that the methods of line fit-
ting that we’ve learned thus far are effective yet brittle (i.e. they fail
when conditions aren’t ideal). Motivated by this observation, today
we’ll be learning how to use the RANSAC algorithm to filter outliers
before applying one of the line fitting methods you explored in the
overnight.

https://drive.google.com/file/d/1bDu-QAPmyNc4SRFicWCiNtEOgpAmaB_g/view?usp=sharing

Day 6

Version: 2019-12-27

-3 -2 -1 0 1 2 3
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Scan Data

Linear Regression

PCA

Figure 1: The lines of best fit as com-
puted by linear regression and PCA.
Due to the mixed structures in the data,
the results are very poor.

5.2 Robust Optimization and the RANSAC Algorithm

The mathematical field of robust optimization provides us with tech-
niques for optimizing functions (such as MSE) that are robust in
the presence of outliers. Today, you’ll explore a very powerful tech-
nique for robust optimization called Random Sample Consensus (or
RANSAC for short). The algorithm works by choosing a small subset
of data points to fit a model, determining whether or not a signifi-
cant proportion of the data is consistent with the fitted model, and
then repeating this process until a satisfactory model is found. For
instance, let’s suppose we want to find a line in this laser scan.

x

y

The RANSAC algorithm starts by randomly choosing a minimal
subset of data points required to define a line (which of course is
2). Given these 2 points, we define our candidate line as the line
that passes through both of those points (this is our “model”). Next,
we divide all of the points in our laser scan into two groups. The

https://en.wikipedia.org/wiki/Random_sample_consensus

Day 6

Version: 2019-12-27

first group, called inliers, consists of points in the laser scan that
are sufficiently close to our candidate line. The second group of
points, called outliers, consists of points in the laser scan that are
far from the candidate line. We are free to choose the notion of what
it means to be close or far from our candidate line. Based on our
experience in the overnight, the perpendicular distance seems like a
reasonable choice to measure the closeness of a point to a line (recall
that this is what PCA uses). Therefore, we’ll use the perpendicular
distance as a metric for deciding whether a point is an inlier or an
outlier. Figure ?? shows an example of applying this procedure.
The inliers are marked in either white (for the two points used to
make the line) or blue. The inliers are the points that fall within a
perpendicular distance d from the line (d is a threshold value that
you specify to RANSAC). The outliers (those that fall outside of a
distance d of the line) are marked in red. While the line defined by
the two randomly chosen points results in some inliers, the number
of inliers (4 including the points used to make the line) is perhaps not
as large as it could be.

x

y

Figure 2: The white points represent the
randomly chosen subset of two points
to define the line. The solid line passing
through them is the resultant line. The
two dashed lines correspond to the
inlier threshold (defined by measuring
a specified distance d perpendicularly
from the line). The points that are
inliers are marked in blue and the
outliers are red.

x

y

Figure 3: The white points represent the
randomly chosen subset of points and
to define the line. The solid line passing
through them is that resultant line. The
two dashed lines correspond to the
inlier threshold (defined by measuring
a specified distance d perpendicularly
from the line). The points that are
inliers are marked in blue and the
outliers are red.

Next, we choose a new random set of 2 points, define the line
passing through those points as our candidate line, and determine
inliers and outliers. If this new candidate line results in more inliers
than the first one we tried, we save the line for later. We repeat the
procedure (choosing two random points, determining inliers, and
testing to see if the number of inliers is the highest we’ve found so
far) n times, where n is a parameter that you specify to the RANSAC
algorithm. If all goes well, one of these n lines results in something
like Figure ??. For the randomly chosen points shown in the figure,
the number of inliers is 7 which looks to be about as good as we can
do with this scan data.

As a final consideration, in the case of fitting lines to laser scan
data, we want to be able to determine not just where the lines are
in the scan, but also where the lines begin and end. This is crucial
since the lines we are finding correspond to things like the beginning
and end of walls or obstacles. There are a few ways to approach this
task, and we’d like you to come up with your own method as part of
today’s activities. We are certainly here to scaffold this, but wrestling
with this a bit will help to build your intuition about the geometry of
the problem.

Day 6

Version: 2019-12-27

6 Coffee Break [15 minutes]

7 Converting from Intuition to Pseudocode [50 minutes]

Let’s take stock of where we are. You should now have a pretty good
idea about how RANSAC works on a conceptual level. Next, you’ll
be working to take this intuition and convert it into pseudocode.

When writing pseudocode it helps to start by stating your high-
level conceptual understanding of how to solve the problem, and
then, work towards progressively more concrete statements of how
to solve the problem. Motivated by this idea, here’s a possible proce-
dure you can use with your partner to generate pseudocode.

1. Clear up conceptual misunderstandings: You just read through
some text that described the RANSAC algorithm. Were there any
parts that didn’t make sense at a conceptual level? If so, make sure
you work through these with your partner. If you can’t figure out
one of your questions, let us know! We’re here to help.

2. Simulate the algorithm: at the whiteboard, simulate the steps that
RANSAC would go through to find a line in a laser scan. You can
do this through a combination of pictures (like the ones in Fig-
ure ??) and explanatory text (e.g., select points at random). As you
go through this process you may find that you don’t understand
some of the details as well as you thought. This is another chance
to ask for help from the teaching team.

3. Write out the major steps: Next, write the sequence of major steps
the algorithm should perform. By this point your descriptions
should be getting more precise (although not necessarily more de-
tailed). Deciding how big to make each step is a bit of a balancing
act. You want to avoid sequences such as “1. Do the thing 2. ???
3. Profit”, but you certainly don’t want to have a 25 step process.
Shoot for something on the order of 5-7 steps. Each of these steps
can later be subdivided into smaller pieces.

4. Figure out your functions: the major steps you’ve defined can be
thought of as the functions that you will write to implement your
algorithm. For instance, you may have come up with a step called
“compute inliers and oultiers”. The fact that you identified this as
a major step for your algorithm suggests that making a function
that performs this computation is probably a good idea. At the
whiteboard write out a list of the functions you will create when
implementing RANSAC. Make sure to describe what each of these
functions expects as input, what it will generate as output, and
what it does.

Day 6

Version: 2019-12-27

5. Write your pseudocode: Next, write pseudocode for each of the
functions you’ve identified as well as pseudocode that stitches
these functions together to implement RANSAC. Your pseudocode
should be written in natural language (avoid using actual MAT-
LAB syntax in your pseudocode), yet precise enough that there
is little ambiguity about how it could be translated into actual
MATLAB code. To better make this last point, here are two differ-
ent potential ways to write pseudocode for finding the maximum
element in a list of values.

Input: a list of numbers L

for each number x in the list L

if x is the highest value so far

remember x

return the highest value we found

This pseudocode has some good properties. It is written in natural
language and it specifies the inputs of the function. On the nega-
tive side there is still a good deal of ambiguity here. How do I test
if “x is the highest value so far”? How do I “remember x”? Here’s
a version that improves the pseudocode in this respect.

Input: a list of numbers L

initialize a variable called maxval to the value negative infinity

for each number x in the list L

if x is greater than maxval

assign the value of x to maxval

return the variable maxval

This new version of the pseudocode can be unambiguously trans-
lated to a computer program.

Exercise (1) Write pseudocode to implement the algorithm described in Sec-
tion ??. Your pseudocode should be capable of going from a polar
coordinate representation of a laser scan to the endpoints, in Carte-
sian space, of a line segment that corresponds to a line in the laser
scan.

8 Implementing Your Algorithm [50 minutes]

In this section you’ll be translating your pseudo-code into MATLAB.

Exercise (2) Implement RANSAC using the pseudocode you wrote in the pre-
vious exercise. Test your algorithm on the data in scan4.mat. As

https://canvas.instructure.com/courses/1096977/files/50482786/download?wrap=1

Day 6

Version: 2019-12-27

a suggestion, you should define a top-level function called robust-
LineFit that takes as input a polar representation of the laser scan,
the threshold d to use to determine whether a scan point is an
inlier, and n the number of random lines to try. Once you’ve im-
plemented your algorithm, experiment with d and n to understand
their effect.

Debugging and implementation tips:

1. Visualize, visualize, visualize. For instance, make sure your
procedure for determining inliers is correct, you should
plot the fitted line, the inliers, and the outliers. Make sure
to use different colors to plot the inliers versus outliers.

2. Develop incrementally. Build your program bit by bit. Ex-
periment in the command window before writing code in
your MATLAB script.

3. Set breakpoints. This can be accomplished by either us-
ing the keyboard statement or by creating a stop sign by
clicking to the left of the line of MATLAB code. These
breakpoints are particularly useful in two situations. The
first situation is obvious – when attempting to debug code.
The second situation is when you are about to write an
intricate section of code. In this case, set the breakpoint
where the code will eventually go. Run your existing (but
incomplete) code. When MATLAB stops at the break point,
you can prototype your solution in the command window
before adding it into your script.

If all has gone well, you should have a beautiful line segment fit to
the data in scan4.mat. Unfortunately for you, The Gauntlet™ is a bit
more complicated than the Chamber of Emptiness™. Next you’ll be
updating your code to find multiple lines.

Exercise (3) First, write pseudocode to find multiple lines in a laser scan. When
doing this you should HEAVILY leverage what you did in exercise
3. For instance, if you have a function called robustLineFit which
takes a scan and computes the best fitting line segment, you can
call it repeatedly to find multiple lines. Specifically, each time you
call your robustLineFit code, you’ll determine a line segment in
scan. After determining a line segment, you should remove the
inlier points for that line segment from the scan data. By removing
these scan points each subsequent line you find will consist of
points that were outliers with respect to the lines you previously

Day 6

Version: 2019-12-27

found. Implement your approach and try it on the data stored in
playpensample.mat.

Debugging and implementation tips:

1. In order to write this in a sane fashion, your functions
will need to be solid. Make sure you are confident in each
function before building on it.

2. You may consider modifying your robustLineFit to return
multiple pieces of information (instead of just the line
segment of best fit). For instance, if you return the inlier
points and outliers points separately your life will be a
lot easier. If you’re not familiar with returning multiple
outputs from a MATLAB function, see this page.

If all went well you should now be finding all the walls in a fairly
complex laser scan. You may have noticed some warts in the lines
that your code finds. The biggest issue is that the line segments that
are found sometimes have large gaps in them. This causes you to find
lines that span across gaps in the environment. Later in the challenge
you’ll be using these line segments to determine a path through the
environment, so it is important that the gaps are not covered over by
spurious lines.

Exercise (4) Modify your robustLineFit code to avoid fitting line segments
with large gaps. To do this, define a procedure for computing
the largest gap in a candidate line segment. Start out by working
on the board to build intuition, and only when you have a good
sense of how to solve the problem, implement things in MATLAB.

9 Preview of the Overnight [15 minutes]

https://drive.google.com/file/d/1GDjJZEugLjlzMgyxxT4KXzV7mgYv3kvI/view?usp=sharing
https://www.mathworks.com/help/matlab/ref/function.html

